Respuesta :
Use the distance formula.
[tex]\sqrt{( x_{2} - x_{1} )^2 + (y_{2} - y_{1})^2}[/tex]
Points S and W.
[tex]\sqrt{(3)^2 + (2)^2}[/tex]
[tex]\sqrt{9+4}[/tex]
[tex]\sqrt{13}[/tex]
~3.6
Points S and T
[tex]\sqrt{(3 - 0)^2 + (-2 - 0)^2}[/tex]
[tex]\sqrt{(3)^2 + (-2)^2}[/tex]
[tex]\sqrt{9+4}[/tex]
[tex]\sqrt{13}[/tex]
~3.6
Points T and U
[tex]\sqrt{(3 - 2)^2 + (-2 + 5)^2}[/tex]
[tex]\sqrt{(1)^2 + (3)^2}[/tex]
[tex]\sqrt{1+9}[/tex]
[tex]\sqrt{10}[/tex]
~3.1
Points U and V
[tex]\sqrt{(2+2)^2 + (-5 + 5)^2}[/tex]
[tex]\sqrt{(4)^2 + (0)^2}[/tex]
[tex]\sqrt{16}[/tex]
~4
Points V and W
[tex]\sqrt{(-2+3)^2 + (-5 + 2)^2}[/tex]
[tex]\sqrt{(1)^2 + (-3)^2}[/tex]
[tex]\sqrt{2+9}[/tex]
[tex]\sqrt{11}[/tex]
~3.3
Add all these together.
3.3 + 3.1 + 4 + 3.1 + 3.6
≈17
[tex]\sqrt{( x_{2} - x_{1} )^2 + (y_{2} - y_{1})^2}[/tex]
Points S and W.
[tex]\sqrt{(3)^2 + (2)^2}[/tex]
[tex]\sqrt{9+4}[/tex]
[tex]\sqrt{13}[/tex]
~3.6
Points S and T
[tex]\sqrt{(3 - 0)^2 + (-2 - 0)^2}[/tex]
[tex]\sqrt{(3)^2 + (-2)^2}[/tex]
[tex]\sqrt{9+4}[/tex]
[tex]\sqrt{13}[/tex]
~3.6
Points T and U
[tex]\sqrt{(3 - 2)^2 + (-2 + 5)^2}[/tex]
[tex]\sqrt{(1)^2 + (3)^2}[/tex]
[tex]\sqrt{1+9}[/tex]
[tex]\sqrt{10}[/tex]
~3.1
Points U and V
[tex]\sqrt{(2+2)^2 + (-5 + 5)^2}[/tex]
[tex]\sqrt{(4)^2 + (0)^2}[/tex]
[tex]\sqrt{16}[/tex]
~4
Points V and W
[tex]\sqrt{(-2+3)^2 + (-5 + 2)^2}[/tex]
[tex]\sqrt{(1)^2 + (-3)^2}[/tex]
[tex]\sqrt{2+9}[/tex]
[tex]\sqrt{11}[/tex]
~3.3
Add all these together.
3.3 + 3.1 + 4 + 3.1 + 3.6
≈17